801《光电技术》考试大纲

一、考试要求

《光电技术》考试大纲适用于泰山学院电子信息硕士专业学位研究生入学考试。光电技术主要考察光电技术的核心理论体系,包括辐射度学与光度学基础、光电探测器原理等。

二、考试内容

第一章 辐射度学与光度学基础

(一) 电磁辐射

电磁波谱的划分,光辐射的量子特性。光的波粒二象性,德布罗意关系式的应用。

(二)辐射度学的基本物理量

辐射通量、辐射出射度、辐射强度、辐射亮度、辐射照度的定义、数学表达式及相互关系。

(三) 光度学基础

光度学基本物理量:光通量、发光强度、光照度、光亮度的 定义,与辐射度学物理量的换算关系。

(四)光谱光视效率

人眼对不同波长光的响应特性,明视觉与暗视觉的差异及工程应用。

(五)黑体辐射

黑体辐射定律。斯特藩-玻尔兹曼定律的物理意义,应用于 高温物体的温度测量。维恩位移定律的应用:确定辐射源的峰值 波长,计算黑体温度。

(六)常用光辐射源

光源的基本特性参数:辐射效率、发光效率、色温、显色指数、光谱分布、稳定性,各参数的测试方法。

第二章 光电探测器的理论基础

(一) 半导体物理基础

晶体的能带理论,费米能级的位置与载流子浓度的关系。

半导体材料的光吸收效应,吸收系数的物理意义及与材料厚度的关系。半导体中的非平衡载流子的复合机制,非平衡载流子 寿命的定义及测量方法。半导体中载流子的扩散与漂移。

(二)光电效应

光电导效应,光电导增益的物理意义,影响光电导灵敏度的 因素。光伏效应,光生电动势的产生机制,开路电压与短路电流 的定义,光伏效应的等效电路。光电子发射效应。

(三)光电探测器的噪声

噪声的分类,降低噪声的方法。

(四)光电探测器的特性参数

响应度与波长的关系,量子效率与响应度的换算。影响响应时间的因素。特性参数的测试方法。

第三章 光电导探测器

(一)光敏电阻的原理与结构

光敏电阻的工作原理; 暗电阻与亮电阻的定义。光电导增益, 影响增益的因素。

(二)光敏电阻的基本特性参数

暗电流对探测下限的影响。光电导灵敏度:光谱灵敏度曲线,温度对灵敏度的影响。温度特性。响应时间,光谱响应范围。

(三)光敏电阻的偏置电路

光敏电阻的等效模型,负载电阻的影响,RC时间常数对响应速度的限制。基本偏置电路、恒流偏置电路与恒压偏置电路的优点与缺点。

第四章 光伏探测器

(一) 光电池

硅光电池的工作原理: PN 结的光生载流子分离,等效电路, 电极电阻、体电阻结漏电阻对性能的影响。

基本特性参数: 开路电压、短路电流、填充因子、转换效率。

(二)雪崩光敏二极管

雪崩倍增原理,倍增系数的数学模型。雪崩光敏二极管的结构设计,降低雪崩噪声的措施,主要特性参数。

(三)位置敏感探测器 (PSD)

位置敏感探测器的工作原理,检测电路。特性参数:位置分辨率、线性度、响应速度。

第五章 光电子发射探测器

(一) 光电阴极

光电阴极的工作机制。

(二) 光电倍增管的原理与结构

光电倍增管的工作原理与核心结构。倍增系数的影响因素。 光电倍增管的主要特性参数。 (三)光电倍增管的工作电路

高压供电电路特点,分压式供电方式,稳压措施,保护电路 措施。

第六章 热探测器

(一)热探测器基本原理

光热转换过程,温度变化方程,最小可探测功率。

(二)热敏电阻探测器

热敏电阻探测器的基本原理与结构。

第七章 光电图像探测器

(一) 电荷耦合器件

电荷耦合器件的工作原理及关键参数,线阵 CCD 和面阵 CCD 的驱动方法与应用。

(二) CMOS 图像传感器

像敏单元结构与组成架构。

(三)红外焦平面阵列

非制冷 IRFPA 的结构与工作原理。

三、考试时间

考试形式为闭卷笔试,考试时间为180分钟,满分150分。

四、参考书目

《光电技术》(第2版),杨应平编著,清华大学出版社,2023年。